Sunday, February 12, 2017

Moyenne Mobile Temps Série Prévision

Prévision avec analyse de séries chronologiques Prévisions La prévision est une méthode largement utilisée dans l'analyse de séries chronologiques pour prévoir une variable de réponse, comme les bénéfices mensuels, la performance des stocks ou le taux de chômage, pour une période déterminée. Les prévisions sont basées sur les modèles des données existantes. Par exemple, un gestionnaire d'entrepôt peut modéliser la quantité de produits à commander pour les 3 prochains mois en fonction des 12 derniers mois de commandes. Vous pouvez utiliser une variété de méthodes de séries temporelles, telles que l'analyse des tendances, la décomposition ou le lissage exponentiel simple, pour modéliser les modèles dans les données et extrapoler ces modèles à l'avenir. Choisissez une méthode d'analyse selon que les modèles sont statiques (constants dans le temps) ou dynamiques (changement dans le temps), la nature de la tendance et les composantes saisonnières, et quelle est l'avance que vous souhaitez prévoir. Avant de produire des prévisions, ajustez plusieurs modèles candidats aux données afin de déterminer quel modèle est le plus stable et le plus précis. Prévisions pour une analyse de la moyenne mobile La valeur ajustée au temps t est la moyenne mobile non concentrée au temps t -1. Les prévisions sont les valeurs ajustées à l'origine prévue. Si vous prévoyez 10 unités de temps à venir, la valeur prévue pour chaque temps sera la valeur ajustée à l'origine. Les données jusqu'à l'origine sont utilisées pour calculer les moyennes mobiles. Vous pouvez utiliser la méthode des moyennes mobiles linéaires en calculant des moyennes mobiles consécutives. La méthode des moyennes mobiles linéaires est souvent utilisée lorsqu'il existe une tendance dans les données. Tout d'abord, calculer et stocker la moyenne mobile de la série d'origine. Ensuite, calculez et stockez la moyenne mobile de la colonne stockée précédemment pour obtenir une deuxième moyenne mobile. Dans la prévision naïve, la prévision du temps t est la valeur des données au temps t -1. L'utilisation d'une procédure de moyenne mobile avec une moyenne mobile de longueur 1 donne des prévisions naïves. Prévisions pour une seule analyse de lissage exponentiel La valeur ajustée au temps t est la valeur lissée au temps t-1. Les prévisions sont la valeur ajustée à l'origine prévue. Si vous prévoyez 10 unités de temps à venir, la valeur prévue pour chaque temps sera la valeur ajustée à l'origine. Des données jusqu'à l'origine sont utilisées pour le lissage. Dans la prévision naïve, la prévision du temps t est la valeur des données au temps t-1. Effectuer un lissage exponentiel simple avec un poids d'un pour faire des prévisions naïves. Prévisions pour une analyse de lissage exponentiel double Le lissage exponentiel double utilise les composantes de niveau et de tendance pour générer des prévisions. La prévision pour m périodes d'avance d'un point à l'instant t est L t mT t. Où L t est le niveau et T t est la tendance à l'instant t. Des données jusqu'à la date d'origine prévue seront utilisées pour le lissage. Prévisions pour la méthode Winters La méthode Winters utilise les composantes niveau, tendance et saisonnière pour générer des prévisions. La prévision pour m périodes d'avance d'un point à l'instant t est: où L t est le niveau et T t est la tendance au temps t, multipliée par (ou ajoutée pour un modèle additif) la composante saisonnière pour la même période de la année précédente. Winters utilise des données jusqu'à l'heure d'origine prévue pour générer les prévisions. En pratique, la moyenne mobile fournira une bonne estimation de la moyenne des séries chronologiques si la moyenne est constante ou change lentement. Dans le cas d'une moyenne constante, la plus grande valeur de m donnera les meilleures estimations de la moyenne sous-jacente. Une période d'observation plus longue évalue en moyenne les effets de la variabilité. Le but de fournir un plus petit m est de permettre à la prévision de répondre à un changement dans le processus sous-jacent. Pour illustrer, nous proposons un ensemble de données qui intègre des changements dans la moyenne sous-jacente de la série chronologique. La figure montre la série chronologique utilisée pour l'illustration ainsi que la demande moyenne à partir de laquelle la série a été générée. La moyenne commence comme une constante à 10. En commençant au temps 21, elle augmente d'une unité dans chaque période jusqu'à ce qu'elle atteigne la valeur de 20 au temps 30. Puis elle redevient constante. Les données sont simulées en ajoutant à la moyenne un bruit aléatoire issu d'une distribution normale avec moyenne nulle et écart-type 3. Les résultats de la simulation sont arrondis à l'entier le plus proche. Le tableau montre les observations simulées utilisées pour l'exemple. Lorsque nous utilisons la table, nous devons nous rappeler qu'à un moment donné, seules les données passées sont connues. Les estimations du paramètre du modèle, pour trois valeurs différentes de m, sont indiquées avec la moyenne des séries temporelles dans la figure ci-dessous. La figure montre l'estimation moyenne mobile de la moyenne à chaque instant et non pas la prévision. Les prévisions changeraient les courbes de la moyenne mobile vers la droite par périodes. Une conclusion ressort immédiatement de la figure. Pour les trois estimations, la moyenne mobile est en retard par rapport à la tendance linéaire, le décalage augmentant avec m. Le retard est la distance entre le modèle et l'estimation dans la dimension temporelle. En raison du décalage, la moyenne mobile sous-estime les observations à mesure que la moyenne augmente. Le biais de l'estimateur est la différence à un moment précis dans la valeur moyenne du modèle et la valeur moyenne prédite par la moyenne mobile. Le biais lorsque la moyenne augmente est négatif. Pour une moyenne décroissante, le biais est positif. Le retard dans le temps et le biais introduit dans l'estimation sont des fonctions de m. Plus la valeur de m. Plus l'ampleur du décalage et du biais est grande. Pour une série en constante augmentation avec tendance a. Les valeurs de retard et de biais de l'estimateur de la moyenne sont données dans les équations ci-dessous. Les courbes d'exemple ne correspondent pas à ces équations parce que le modèle d'exemple n'est pas en augmentation continue, plutôt qu'il commence comme une constante, des changements à une tendance et devient alors à nouveau constante. Les courbes d'exemple sont également affectées par le bruit. La prévision moyenne mobile des périodes dans le futur est représentée par le déplacement des courbes vers la droite. Le décalage et le biais augmentent proportionnellement. Les équations ci-dessous indiquent le décalage et le biais d'une période de prévision dans le futur par rapport aux paramètres du modèle. Encore une fois, ces formules sont pour une série chronologique avec une tendance linéaire constante. Nous ne devrions pas être surpris de ce résultat. L'estimateur de la moyenne mobile est basé sur l'hypothèse d'une moyenne constante, et l'exemple a une tendance linéaire dans la moyenne pendant une partie de la période d'étude. Étant donné que les séries de temps réel obéiront rarement exactement aux hypothèses de n'importe quel modèle, nous devrions être préparés à de tels résultats. On peut aussi conclure de la figure que la variabilité du bruit a le plus grand effet pour m plus petit. L'estimation est beaucoup plus volatile pour la moyenne mobile de 5 que la moyenne mobile de 20. Nous avons les désirs contradictoires d'augmenter m pour réduire l'effet de la variabilité due au bruit et diminuer m pour rendre la prévision plus sensible aux changements En moyenne. L'erreur est la différence entre les données réelles et la valeur prévue. Si la série chronologique est vraiment une valeur constante, la valeur attendue de l'erreur est nulle et la variance de l'erreur est composée d'un terme qui est une fonction de et d'un second terme qui est la variance du bruit,. Le premier terme est la variance de la moyenne estimée avec un échantillon de m observations, en supposant que les données proviennent d'une population avec une moyenne constante. Ce terme est minimisé en faisant m le plus grand possible. Un grand m rend la prévision insensible à une modification de la série chronologique sous-jacente. Pour rendre la prévision sensible aux changements, nous voulons m aussi petit que possible (1), mais cela augmente la variance d'erreur. La prévision pratique nécessite une valeur intermédiaire. Prévision avec Excel Le complément de prévision met en œuvre les formules de moyenne mobile. L'exemple ci-dessous montre l'analyse fournie par l'add-in pour les données d'échantillon de la colonne B. Les 10 premières observations sont indexées -9 à 0. Par rapport au tableau ci-dessus, les indices de période sont décalés de -10. Les dix premières observations fournissent les valeurs de démarrage pour l'estimation et sont utilisées pour calculer la moyenne mobile pour la période 0. La colonne MA (10) (C) montre les moyennes mobiles calculées. Le paramètre de la moyenne mobile m est dans la cellule C3. La colonne Fore (1) (D) montre une prévision pour une période dans le futur. L'intervalle de prévision est dans la cellule D3. Lorsque l'intervalle de prévision est changé en un nombre plus grand, les nombres de la colonne Fore sont décalés vers le bas. La colonne Err (1) (E) montre la différence entre l'observation et la prévision. Par exemple, l'observation au temps 1 est 6. La valeur prévue à partir de la moyenne mobile au temps 0 est 11.1. L'erreur est alors de -5,1. L'écart type et l'écart moyen moyen (MAD) sont calculés respectivement dans les cellules E6 et E7. Modèles de lissage et de lissage exponentiels Comme première étape pour aller au-delà des modèles moyens, des modèles aléatoires et des tendances linéaires, Extrapolées à l'aide d'un modèle de moyenne mobile ou de lissage. L'hypothèse de base derrière les modèles de moyenne et de lissage est que la série temporelle est localement stationnaire avec une moyenne lentement variable. Par conséquent, nous prenons une moyenne mobile (locale) pour estimer la valeur actuelle de la moyenne, puis nous l'utilisons comme prévision pour le proche avenir. Cela peut être considéré comme un compromis entre le modèle moyen et le modèle randonnée aléatoire sans dérive. La même stratégie peut être utilisée pour estimer et extrapoler une tendance locale. Une moyenne mobile est souvent appelée une version quotsmoothedquot de la série originale parce que la moyenne à court terme a pour effet de lisser les bosses dans la série d'origine. En ajustant le degré de lissage (la largeur de la moyenne mobile), on peut espérer trouver un équilibre optimal entre la performance des modèles de marche moyenne et aléatoire. Le modèle le plus simple de la moyenne est le. Moyenne mobile simple (également pondérée): La prévision de la valeur de Y à l'instant t1 qui est faite à l'instant t est égale à la moyenne simple des observations m les plus récentes: (Ici et ailleurs, je vais utiliser le symbole 8220Y-hat8221 pour me tenir Pour une prévision de la série temporelle Y faite le plus tôt possible par un modèle donné). Cette moyenne est centrée à la période t (m1) 2, ce qui implique que l'estimation de la moyenne locale aura tendance à se situer en deçà du vrai Valeur de la moyenne locale d'environ (m1) 2 périodes. Ainsi, nous disons que l'âge moyen des données dans la moyenne mobile simple est (m1) 2 par rapport à la période pour laquelle la prévision est calculée: c'est le temps pendant lequel les prévisions auront tendance à être en retard par rapport aux points de retournement dans les données . Par exemple, si vous faites la moyenne des 5 dernières valeurs, les prévisions seront environ 3 périodes en retard pour répondre aux points de retournement. Notez que si m1, le modèle de moyenne mobile simple (SMA) est équivalent au modèle de marche aléatoire (sans croissance). Si m est très grand (comparable à la longueur de la période d'estimation), le modèle SMA est équivalent au modèle moyen. Comme pour tout paramètre d'un modèle de prévision, il est courant d'ajuster la valeur de k afin d'obtenir le meilleur rapport entre les données, c'est-à-dire les erreurs de prévision les plus faibles en moyenne. Voici un exemple d'une série qui semble présenter des fluctuations aléatoires autour d'une moyenne lentement variable. Tout d'abord, essayons de l'adapter à un modèle de marche aléatoire, ce qui équivaut à une moyenne mobile simple de 1 terme: Le modèle de marche aléatoire répond très rapidement aux changements dans la série, mais en le faisant, il choisit une grande partie du quotnoise dans le Données (les fluctuations aléatoires) ainsi que le quotsignalquot (la moyenne locale). Si nous essayons plutôt une moyenne mobile simple de 5 termes, nous obtenons un ensemble plus lisse de prévisions: La moyenne mobile simple à 5 termes génère des erreurs beaucoup plus faibles que le modèle de marche aléatoire dans ce cas. L'âge moyen des données de cette prévision est de 3 ((51) 2), de sorte qu'il tend à être en retard par rapport aux points de retournement d'environ trois périodes. (Par exemple, un ralentissement semble avoir eu lieu à la période 21, mais les prévisions ne tournent pas jusqu'à plusieurs périodes plus tard.) Notez que les prévisions à long terme du modèle SMA sont une ligne droite horizontale, tout comme dans la marche aléatoire maquette. Ainsi, le modèle SMA suppose qu'il n'y a pas de tendance dans les données. Cependant, alors que les prévisions du modèle randonnée aléatoire sont tout simplement égales à la dernière valeur observée, les prévisions du modèle SMA sont égales à une moyenne pondérée des valeurs récentes. Les limites de confiance calculées par Statgraphics pour les prévisions à long terme de la moyenne mobile simple ne s'élargissent pas à mesure que l'horizon de prévision augmente. Ce n'est évidemment pas correct Malheureusement, il n'existe pas de théorie statistique sous-jacente qui nous indique comment les intervalles de confiance devraient élargir pour ce modèle. Cependant, il n'est pas trop difficile de calculer des estimations empiriques des limites de confiance pour les prévisions à plus long terme. Par exemple, vous pouvez créer une feuille de calcul dans laquelle le modèle SMA sera utilisé pour prévoir 2 étapes à venir, 3 étapes à venir, etc. dans l'exemple de données historiques. Vous pouvez ensuite calculer les écarts types des erreurs à chaque horizon de prévision, puis construire des intervalles de confiance pour les prévisions à long terme en ajoutant et en soustrayant des multiples de l'écart-type approprié. Si nous essayons une moyenne mobile simple de 9 termes, nous obtenons des prévisions encore plus lisses et plus d'un effet de retard: L'âge moyen est maintenant 5 périodes ((91) 2). Si l'on prend une moyenne mobile à 19 mois, l'âge moyen passe à 10: On remarque que les prévisions sont maintenant en retard par rapport aux points de retournement d'environ 10 périodes. Quelle quantité de lissage est la meilleure pour cette série Voici un tableau qui compare leurs statistiques d'erreur, incluant également une moyenne à 3 termes: Le modèle C, la moyenne mobile à 5 termes, donne la plus faible valeur de RMSE d'une petite marge sur les 3 À moyen terme et à moyen terme, et leurs autres statistiques sont presque identiques. Ainsi, parmi les modèles avec des statistiques d'erreur très similaires, nous pouvons choisir si nous préférerions un peu plus de réactivité ou un peu plus de souplesse dans les prévisions. Le modèle de la moyenne mobile simple décrit ci-dessus a la propriété indésirable de traiter les dernières k observations de manière égale et d'ignorer complètement toutes les observations précédentes. (Retourner au haut de la page.) Intuitivement, les données passées devraient être actualisées de façon plus graduelle - par exemple, l'observation la plus récente devrait prendre un peu plus de poids que la deuxième plus récente, et la deuxième plus récente devrait avoir un peu plus de poids que la 3ème plus récente, et bientôt. Le simple lissage exponentiel (SES) modèle accomplit cela. Soit 945 une constante de quotslacement constante (un nombre entre 0 et 1). Une façon d'écrire le modèle consiste à définir une série L qui représente le niveau actuel (c'est-à-dire la valeur moyenne locale) de la série estimée à partir des données jusqu'à présent. La valeur de L à l'instant t est calculée récursivement à partir de sa propre valeur précédente comme ceci: La valeur lissée actuelle est donc une interpolation entre la valeur lissée précédente et l'observation courante, où 945 contrôle la proximité de la valeur interpolée à la valeur la plus récente observation. La prévision pour la période suivante est simplement la valeur lissée actuelle: De manière équivalente, nous pouvons exprimer directement la prochaine prévision en fonction des prévisions précédentes et des observations précédentes, dans l'une des versions équivalentes suivantes. Dans la première version, la prévision est une interpolation entre la prévision précédente et l'observation précédente: Dans la deuxième version, la prévision suivante est obtenue en ajustant la prévision précédente dans la direction de l'erreur précédente par une fraction 945. est l'erreur faite à Temps t. Dans la troisième version, la prévision est une moyenne mobile exponentiellement pondérée (c'est-à-dire actualisée) avec le facteur d'actualisation 1-945: La version d'interpolation de la formule de prévision est la plus simple à utiliser si vous mettez en œuvre le modèle sur une feuille de calcul: Cellule unique et contient des références de cellule pointant vers la prévision précédente, l'observation précédente et la cellule où la valeur de 945 est stockée. Notez que si 945 1, le modèle SES est équivalent à un modèle de marche aléatoire (sans croissance). Si 945 0, le modèle SES est équivalent au modèle moyen, en supposant que la première valeur lissée est égale à la moyenne. (Retourner au haut de la page.) L'âge moyen des données dans la prévision de lissage exponentielle simple est de 1 945 par rapport à la période pour laquelle la prévision est calculée. (Ce n'est pas censé être évident, mais on peut facilement le montrer en évaluant une série infinie.) Par conséquent, la prévision moyenne mobile simple tend à être en retard par rapport aux points de retournement d'environ 1 945 périodes. Par exemple, lorsque 945 0,5 le lag est 2 périodes lorsque 945 0,2 le retard est de 5 périodes lorsque 945 0,1 le lag est de 10 périodes, et ainsi de suite. Pour un âge moyen donné (c'est-à-dire le décalage), le lissage exponentiel simple (SES) est un peu supérieur à la moyenne mobile simple (SMA), car il place relativement plus de poids sur l'observation la plus récente. Il est un peu plus sensible aux changements survenus dans le passé récent. Par exemple, un modèle SMA avec 9 termes et un modèle SES avec 945 0,2 ont tous deux une moyenne d'âge de 5 pour les données dans leurs prévisions, mais le modèle SES met plus de poids sur les 3 dernières valeurs que le modèle SMA et à la Un autre avantage important du modèle SES par rapport au modèle SMA est que le modèle SES utilise un paramètre de lissage qui est variable en continu, de sorte qu'il peut facilement être optimisé En utilisant un algorithme quotsolverquot pour minimiser l'erreur quadratique moyenne. La valeur optimale de 945 dans le modèle SES de cette série s'élève à 0,2961, comme indiqué ici: L'âge moyen des données de cette prévision est de 10,2961 3,4 périodes, ce qui est similaire à celle d'une moyenne mobile simple à 6 termes. Les prévisions à long terme du modèle SES sont une droite horizontale. Comme dans le modèle SMA et le modèle randonnée aléatoire sans croissance. Cependant, notez que les intervalles de confiance calculés par Statgraphics divergent maintenant d'une manière raisonnable et qu'ils sont sensiblement plus étroits que les intervalles de confiance pour le modèle de marche aléatoire. Le modèle SES suppose que la série est quelque peu plus prévisible que le modèle de marche aléatoire. Un modèle SES est en fait un cas particulier d'un modèle ARIMA. La théorie statistique des modèles ARIMA fournit une base solide pour le calcul des intervalles de confiance pour le modèle SES. En particulier, un modèle SES est un modèle ARIMA avec une différence non saisonnière, un terme MA (1) et aucun terme constant. Autrement connu sous le nom de modèle de MARIMA (0,1,1) sans constantquot. Le coefficient MA (1) du modèle ARIMA correspond à la quantité 1 945 dans le modèle SES. Par exemple, si vous ajoutez un modèle ARIMA (0,1,1) sans constante à la série analysée ici, le coefficient MA (1) estimé s'avère être 0.7029, ce qui est presque exactement un moins 0.2961. Il est possible d'ajouter l'hypothèse d'une tendance linéaire constante non nulle à un modèle SES. Pour cela, il suffit de spécifier un modèle ARIMA avec une différence non saisonnière et un terme MA (1) avec une constante, c'est-à-dire un modèle ARIMA (0,1,1) avec constante. Les prévisions à long terme auront alors une tendance égale à la tendance moyenne observée sur l'ensemble de la période d'estimation. Vous ne pouvez pas le faire en conjonction avec l'ajustement saisonnier, car les options de réglage saisonnier sont désactivées lorsque le type de modèle est réglé sur ARIMA. Cependant, vous pouvez ajouter une tendance exponentielle à long terme constante à un modèle de lissage exponentiel simple (avec ou sans ajustement saisonnier) en utilisant l'option d'ajustement de l'inflation dans la procédure de prévision. Le taux d'inflation appropriée (taux de croissance en pourcentage) par période peut être estimé comme le coefficient de pente dans un modèle de tendance linéaire adapté aux données en conjonction avec une transformation logarithmique naturelle, ou il peut être basé sur d'autres informations indépendantes concernant les perspectives de croissance à long terme . (Retour au haut de la page) Browns Linear (c'est-à-dire double) Lissage exponentiel Les modèles SMA et SES supposent qu'il n'y a aucune tendance des données (ce qui est normalement correct ou au moins pas trop mauvais pour 1- Des prévisions d'avance lorsque les données sont relativement bruyantes), et elles peuvent être modifiées pour incorporer une tendance linéaire constante comme indiqué ci-dessus. Qu'en est-il des tendances à court terme Si une série affiche un taux de croissance variable ou un schéma cyclique qui se distingue clairement du bruit, et s'il est nécessaire de prévoir plus d'une période à venir, l'estimation d'une tendance locale pourrait également être un problème. Le modèle de lissage exponentiel simple peut être généralisé pour obtenir un modèle linéaire de lissage exponentiel (LES) qui calcule des estimations locales de niveau et de tendance. Le modèle de tendance le plus simple variant dans le temps est le modèle de lissage exponentiel linéaire de Browns, qui utilise deux séries lissées différentes qui sont centrées à différents moments. La formule de prévision est basée sur une extrapolation d'une droite passant par les deux centres. (Une version plus sophistiquée de ce modèle, Holt8217s, est discutée ci-dessous.) La forme algébrique du modèle de lissage exponentiel linéaire de Brown8217s, comme celle du modèle de lissage exponentiel simple, peut être exprimée sous différentes formes différentes mais équivalentes. La forme quotométrique de ce modèle est habituellement exprimée comme suit: Soit S la série lissée par singulier obtenue en appliquant un lissage exponentiel simple à la série Y. C'est-à-dire que la valeur de S à la période t est donnée par: (Rappelons que, sous simple Le lissage exponentiel, ce serait la prévision de Y à la période t1.) Puis, désignons par Squot la série doublement lissée obtenue en appliquant le lissage exponentiel simple (en utilisant le même 945) à la série S: Enfin, la prévision pour Y tk. Pour tout kgt1, est donnée par: Ceci donne e 1 0 (c'est-à-dire tricher un peu, et laisser la première prévision égaler la première observation réelle), et e 2 Y 2 8211 Y 1. Après quoi les prévisions sont générées en utilisant l'équation ci-dessus. Cela donne les mêmes valeurs ajustées que la formule basée sur S et S si ces derniers ont été démarrés en utilisant S 1 S 1 Y 1. Cette version du modèle est utilisée sur la page suivante qui illustre une combinaison de lissage exponentiel avec ajustement saisonnier. Holt8217s Linear Exponential Smoothing Brown8217s Le modèle LES calcule les estimations locales de niveau et de tendance en lissant les données récentes, mais le fait qu'il le fait avec un seul paramètre de lissage impose une contrainte sur les modèles de données qu'il peut adapter: le niveau et la tendance Ne sont pas autorisés à varier à des taux indépendants. Le modèle LES de Holt8217s aborde cette question en incluant deux constantes de lissage, une pour le niveau et une pour la tendance. A tout moment t, comme dans le modèle Brown8217s, il existe une estimation L t du niveau local et une estimation T t de la tendance locale. Ici, elles sont calculées récursivement à partir de la valeur de Y observée au temps t et des estimations précédentes du niveau et de la tendance par deux équations qui leur appliquent un lissage exponentiel séparément. Si le niveau et la tendance estimés au temps t-1 sont L t82091 et T t-1. Respectivement, alors la prévision pour Y tshy qui aurait été faite au temps t-1 est égale à L t-1 T t-1. Lorsque la valeur réelle est observée, l'estimation actualisée du niveau est calculée récursivement en interpolant entre Y tshy et sa prévision, L t-1 T t-1, en utilisant des poids de 945 et 1 945. La variation du niveau estimé, À savoir L t 8209 L t82091. Peut être interprété comme une mesure bruyante de la tendance à l'instant t. L'estimation actualisée de la tendance est ensuite calculée récursivement en interpolant entre L t 8209 L t82091 et l'estimation précédente de la tendance, T t-1. Utilisant des poids de 946 et 1-946: L'interprétation de la constante de lissage de tendance 946 est analogue à celle de la constante de lissage de niveau 945. Les modèles avec de petites valeurs de 946 supposent que la tendance ne change que très lentement avec le temps tandis que les modèles avec 946 supposent qu'il change plus rapidement. Un modèle avec un grand 946 croit que l'avenir lointain est très incertain, parce que les erreurs dans l'estimation de la tendance deviennent très importantes lors de la prévision de plus d'une période à venir. Les constantes de lissage 945 et 946 peuvent être estimées de la manière habituelle en minimisant l'erreur quadratique moyenne des prévisions à 1 pas. Lorsque cela est fait dans Statgraphics, les estimations s'avèrent être 945 0,3048 et 946 0,008. La très petite valeur de 946 signifie que le modèle suppose très peu de changement dans la tendance d'une période à l'autre, donc, fondamentalement, ce modèle essaie d'estimer une tendance à long terme. Par analogie avec la notion d'âge moyen des données utilisées pour estimer le niveau local de la série, l'âge moyen des données utilisées pour estimer la tendance locale est proportionnel à 1 946, mais pas exactement égal à celui-ci . Dans ce cas, cela s'avère être 10.006 125. Ceci n'est pas un nombre très précis dans la mesure où la précision de l'estimation de 946 est vraiment de 3 décimales, mais elle est du même ordre de grandeur que la taille de l'échantillon de 100, donc Ce modèle est la moyenne sur beaucoup d'histoire dans l'estimation de la tendance. Le graphique ci-dessous montre que le modèle ERP estime une tendance locale légèrement plus grande à la fin de la série que la tendance constante estimée dans le modèle SEStrend. En outre, la valeur estimée de 945 est presque identique à celle obtenue en ajustant le modèle SES avec ou sans tendance, donc c'est presque le même modèle. Maintenant, est-ce que ces ressembler à des prévisions raisonnables pour un modèle qui est censé être l'estimation d'une tendance locale Si vous 8220eyeball8221 cette intrigue, il semble que la tendance locale a tourné vers le bas à la fin de la série Qu'est-ce qui s'est passé Les paramètres de ce modèle Ont été estimées en minimisant l'erreur au carré des prévisions à un pas, et non des prévisions à plus long terme, auquel cas la tendance ne fait pas beaucoup de différence. Si tout ce que vous regardez sont des erreurs en une étape, vous ne voyez pas l'image plus grande des tendances sur (disons) 10 ou 20 périodes. Afin d'obtenir ce modèle plus en phase avec notre extrapolation ophtalmique des données, nous pouvons ajuster manuellement la constante de lissage de tendance afin qu'il utilise une ligne de base plus courte pour l'estimation de tendance. Par exemple, si nous choisissons de fixer 946 0,1, alors l'âge moyen des données utilisées pour estimer la tendance locale est de 10 périodes, ce qui signifie que nous faisons la moyenne de la tendance au cours des 20 dernières périodes. Here8217s ce que l'intrigue de prévision ressemble si nous fixons 946 0.1 tout en gardant 945 0.3. Cela semble intuitivement raisonnable pour cette série, bien qu'il soit probablement dangereux d'extrapoler cette tendance plus de 10 périodes dans l'avenir. Qu'en est-il des statistiques d'erreur Voici une comparaison de modèles pour les deux modèles présentés ci-dessus ainsi que trois modèles SES. La valeur optimale de 945 pour le modèle SES est d'environ 0,3, mais des résultats similaires (avec une légère ou une plus faible réactivité, respectivement) sont obtenus avec 0,5 et 0,2. (A) Holts linéaire exp. Lissage avec alpha 0,3048 et bêta 0,008 (B) Holts linéaire exp. Lissage avec alpha 0.3 et bêta 0.1 (C) Lissage exponentiel simple avec alpha 0.5 (D) Lissage exponentiel simple avec alpha 0.3 (E) Lissage exponentiel simple avec alpha 0.2 Leurs stats sont quasiment identiques, donc nous ne pouvons pas vraiment faire le choix sur la base Des erreurs de prévision à 1 pas dans l'échantillon de données. Nous devons nous rabattre sur d'autres considérations. Si nous croyons fermement qu'il est logique de baser l'estimation de la tendance actuelle sur ce qui s'est produit au cours des 20 dernières périodes, nous pouvons faire valoir le modèle ERP avec 945 0,3 et 946 0,1. Si nous voulons être agnostiques quant à savoir s'il existe une tendance locale, alors l'un des modèles SSE pourrait être plus facile à expliquer et donnerait également plus de prévisions moyennes de route pour les 5 ou 10 prochaines périodes. (Retourner au haut de la page.) Quel type d'extrapolation de tendance est le mieux: horizontal ou linéaire Les données empiriques suggèrent que, si les données ont déjà été ajustées (si nécessaire) pour l'inflation, il peut être imprudent d'extrapoler des courbes linéaires à court terme Tendances très loin dans l'avenir. Les tendances évidentes aujourd'hui peuvent ralentir à l'avenir en raison de causes variées telles que l'obsolescence des produits, la concurrence accrue, les ralentissements cycliques ou les retournements dans une industrie. Pour cette raison, le lissage exponentiel simple obtient souvent une meilleure sortie de l'échantillon que ce qui pourrait être attendu autrement, malgré son extrapolation de tendance horizontale quotnaivequot. Les modifications de tendance amorties du modèle de lissage exponentiel linéaire sont aussi souvent utilisées dans la pratique pour introduire une note de conservatisme dans ses projections de tendance. Le modèle ERP à tendance amortie peut être mis en œuvre comme un cas particulier d'un modèle ARIMA, en particulier un modèle ARIMA (1,1,2). Il est possible de calculer des intervalles de confiance autour des prévisions à long terme produites par les modèles de lissage exponentiel, en les considérant comme des cas spéciaux de modèles ARIMA. La largeur des intervalles de confiance dépend de (i) l'erreur RMS du modèle, (ii) le type de lissage (simple ou linéaire) (iii) la valeur (S) de la constante de lissage et (iv) le nombre de périodes à venir que vous prévoyez. En général, les intervalles s'étalent plus rapidement lorsque 945 devient plus grand dans le modèle SES et ils s'étalent beaucoup plus rapidement lorsque linéaire plutôt que le lissage simple est utilisé. Ce sujet est abordé plus en détail dans la section des modèles ARIMA des notes. (Retournez en haut de la page.)


No comments:

Post a Comment